Second Moment Method on k-SAT: a General Framework
نویسندگان
چکیده
Just as the First Moment Method is a way to upper-bound the threshold of k-SAT, so is the Second Moment Method a way to lower-bound it. After a brief technical introduction to the Second Moment Method in section 1.1, we present in section 1.2 a survey of the early attempts to lower-bound the threshold of 3-SAT through the Second Moment Method. As in the First Moment Method, the general idea is to count special kinds of solutions. However, the selection of solutions is not the same as in the First Moment Method:
منابع مشابه
Second moment method for a family of boolean CSP
The estimation of phase transitions in random boolean Constraint Satisfaction Problems (CSP) is based on two fundamental tools: the first and second moment methods. While the first moment method on the number of solutions permits to compute upper bounds on any boolean CSP, the second moment method used for computing lower bounds proves to be more tricky and in most cases gives only the trivial ...
متن کاملBounds on Threshold of Regular Random k-SAT
We consider the regular model of formula generation in conjunctive normal form (CNF) introduced by Boufkhad et. al. in [6]. In [6], it was shown that the threshold for regular random 2-SAT is equal to unity. Also, upper and lower bound on the threshold for regular random 3-SAT were derived. Using the first moment method, we derive an upper bound on the threshold for regular random k-SAT for any...
متن کاملPairs of SAT Assignments and Clustering in Random Boolean Formulæ
We investigate geometrical properties of the random K-satisfiability problem. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where SAT assignments are grouped into well separated clusters. This confirms the validity of the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical...
متن کاملCVaR Reduced Fuzzy Variables and Their Second Order Moments
Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...
متن کاملA sharp threshold for a random constraint satisfaction problem
We consider random instances I of a constraint satisfaction problem generalizing k-SAT: given n boolean variables, m ordered k-tuples of literals, and q “bad” clause assignments, find an assignment which does not set any of the k-tuples to a bad clause assignment. We consider the case where k = Ω(log n), and generate instance I by including every k-tuple of literals independently with probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.5588 شماره
صفحات -
تاریخ انتشار 2010